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Background

« Statistical Disclosure Control
— A posteriori approaches to data privacy
— Extensively used in statistics
— Methods include random sampling, modification, summarization, perturbation

« Syntactical Data Anonymization

Data is modified so that syntactic requirements are satisfied

»1raditional” approach in computer science

Examples of syntactic privacy models: k-anonymity, |-diversity, t-closeness

— Data anonymization algorithms balance privacy protection against utility (quantified by models)

« Differential Privacy
— Not a property of a dataset, but of a data processing method
— Strong degree of privacy protection
— Gold standard in academia
— Methods include the Laplace mechanism and the exponential mechanism
— Increasingly used in practice, e.g. by Google and Apple
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Motivation TUTI

» The ARX Data Anonymization Tool ARX Data Anonymization Tool
provides various privacy models, quality
models and transformation techniques

* Release of microdata allows to perform
flexible analyses

» Truthfulness of data desirable in many
fields, including the medical domain

« Goal: Integrate differentially private data
anonymization which
— produces truthful microdata
— integrates well with existing methods
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Safe-Pub: High-level overview UM
« Based the mechanism (k,3)-SDGS by Li et al. <19 / + \
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N. Li et al. On sampling, anonymization, and differential privacy: . . . . . . . .
Or, k-anonymization meets differential privacy. In ACM Symp. Information, [40-60] * 819-- | >2000 [40-60[ * 819- | >2000

Computer and Communications Security, pages 32—-33, 2012.
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Safe-Pub: Challenges TUTI

Challenge 2:
How to determine
a suitable scheme?

Privacy parameters Input data Generalization scheme
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Challenge 3: Output data utility?
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Challenge 1: Calculation of Parameters

Inversion of the following formulas:
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Challenge 2: Selection of a Generalization Scheme TUm

s-differentially private search strategy can be used N. Li et al. On sampling, anonymization, and differential privacy:
Or, k-anonymization meets differential privacy. In ACM Symp. Information,

Computer and Communications Security, pages 32-33, 2012.
Challenges:

* No search strategy described

Top

A Expanded
. Pivot

Solution:
» Differentially private implementation
of a typical search-based
anonymization algorithm
» Greedy search through all possible
combinations of generalization levels (lattice)
* Repeated applications
of the exponential mechanism
guided by score functions capturing utility
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Challenge 3: Utility of Data — Score Functions

Score functions tailored to general purpose quality models
- Data Granularity (cell-level)
- Generalization Intensity (cell-level)
- Discernibility (record-level)
- Group Size (record-level)
- Non-Uniform Entropy (attribute-level)

Workload-aware score function tailored to statistical classification

- Based on the special-purpose model proposed by lyengar
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Challenge 3: Utility of Data — Evaluation

Parameterization:

Granularity
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« Avalue of ¢ in the order of one is recommendable
« Avalue of about 300 search steps is recommendable
« Small privacy budget in the order of 0.1 sufficient for the search

* It has been suggested to choose § depending on the size n of the dataset so that § < % holds
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Challenge 3: Utility of Data — Evaluations TUTI

Comparison of classification accuracies with prior work:
1-differential privacy: DiffGen, DiffP-C4.5, LDA, SDQ and DPNB
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Algorithm | DiffP-C4.5 | LDA | DPNB | DPNB | SDQ = 40 g ) %

Dataset US Census Mursery :tJ 20 O
Competitor | 82.1% | 80.8% | 82% | 90% | 79.9% 0

SafePub | 80.9% ‘81,5% 81.2% | 83.7% | 83.8% 0 255075100 0 2550 75100
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Conclusions

« SafePub can compete with state-of-the-art
 The method is simple and easy to parameterize
» To achieve truthfulness, (g,0)-differential privacy must be implemented
« Various direcetions for future research:
— Investigate more flexible data transformation techniques
— Consider the effects of random sampling performed during data acquisition
to reduce the amount of explicit random sampling
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