ТΠ

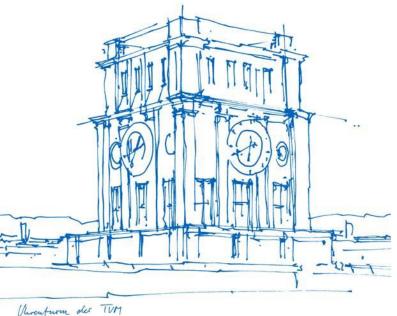
SafePub: A Truthful Data Anonymization Algorithm With Strong Privacy Guarantees

Raffael Bild, Klaus A. Kuhn, and Fabian Prasser

Institute of Medical Informatics, Statistics and Epidemiology

Technical University of Munich

Barcelona, 25.07.2018



Background

- Statistical Disclosure Control
 - A posteriori approaches to data privacy
 - Extensively used in statistics
 - Methods include random sampling, modification, summarization, perturbation

Syntactical Data Anonymization

- Data is modified so that syntactic requirements are satisfied
- "Traditional" approach in computer science
- Examples of syntactic privacy models: k-anonymity, l-diversity, t-closeness
- Data anonymization algorithms balance privacy protection against utility (quantified by models)

Differential Privacy

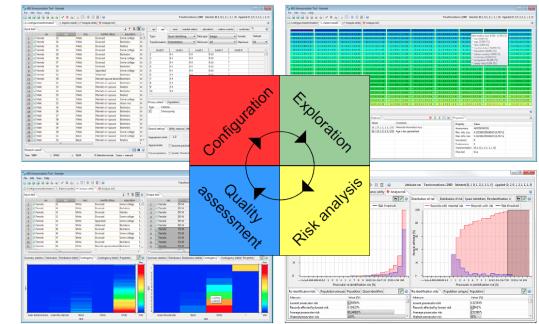
- Not a property of a dataset, but of a data processing method
- Strong degree of privacy protection
- Gold standard in academia
- Methods include the Laplace mechanism and the exponential mechanism
- Increasingly used in practice, e.g. by Google and Apple

ТШ

Motivation

- The ARX Data Anonymization Tool provides various privacy models, quality models and transformation techniques
- Release of microdata allows to perform
 flexible analyses
- Truthfulness of data desirable in many fields, including the medical domain
- **Goal:** Integrate differentially private data anonymization which
 - produces truthful microdata
 - integrates well with existing methods

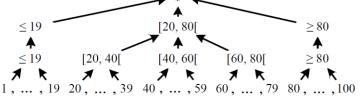
ARX Data Anonymization Tool



Safe-Pub: High-level overview

- Based the mechanism (k,β) -SDGS by Li et al.
- Satisfies (ε,δ)-differential privacy
- Overview
 - 1. Random sampling (parameter β)
 - 2. K-Anonymization (parameter k)
 - Attribute generalization
 - Record suppression
- Has only been studied from a purely theoretical perspective. Focus: Calculation of ϵ and δ resulting from β and k

N. Li et al. On sampling, anonymization, and differential privacy: Or, k-anonymization meets differential privacy. In *ACM Symp. Information, Computer and Communications Security*, pages 32–33, 2012.

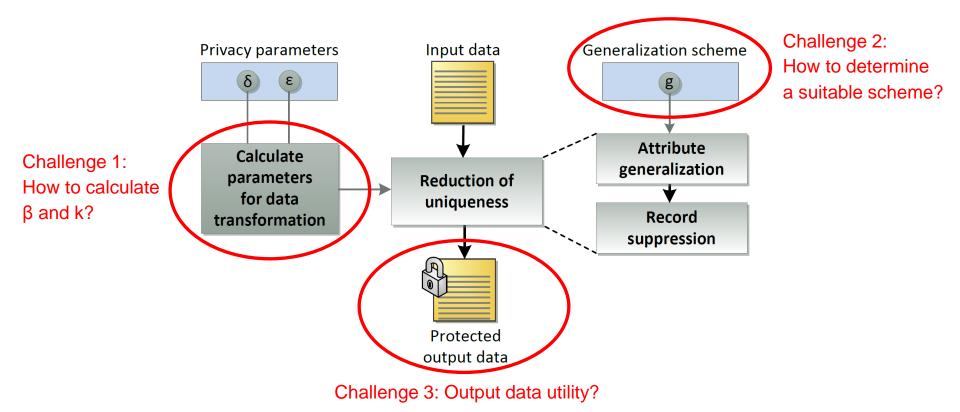


Input da	ta			Random sample				
Age	Gender	Zipcode	Income		Age	Gender	Zipcode	Income
20	Male	81667	2000	Random sampling	20	Male	81667	2000
20	Female	81675	2000		20	Female	81675	2000
50	Male	81925	2500		50	Male	81925	2500
55	Male	81975	2800		*	*	*	*
37	Female	82567	3000		37	Female	82567	3000
40	Female	81931	3000		*	*	*	*
40	Female	81931	3000		40	Female	81931	3000

Attribute generalization

	Generalized random sample				Output dataset				
	Age	Gender	Zipcode	Income		Age	Gender	Zipcode	Income
•	[20-40[*	816	≤ 2000	Record	[20-40[*	816	≤ 2000
	[20-40[*	816	≤ 2000		[20-40[*	816	≤ 2000
	[40-60[*	819	> 2000		[40-60[*	819	> 2000
	*	*	*	*		*	*	*	*
	[20-40[*	825	> 2000		*	*	*	*
	*	*	*	*		*	*	*	*
	[40-60[*	819	> 2000		[40-60[*	819	> 2000

Safe-Pub: Challenges



$\varepsilon = -\ln(1-\beta),$ $\delta = \max_{n: n \ge nm} a_n = \max_{n: n \ge nm} \sum_{j > \gamma n}^n {n \choose j} \beta^j (1-\beta)^{n-j}$

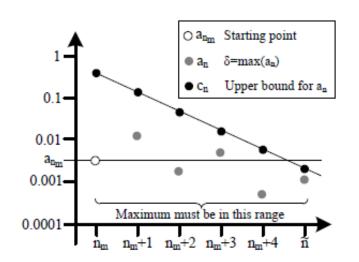
Challenge 1: Calculation of Parameters

where
$$n_m = \left[\frac{k}{\gamma} - 1\right]$$
 and $\gamma = \frac{e^{\varepsilon^{-1}}\beta}{e^{\varepsilon}}$

Challenge: The sequence a_n is non-monotonic

Inversion of the following formulas:

Solution: Exploit sequence $c_n = e^{-n(\gamma \ln(\frac{\gamma}{\beta}) - (\gamma - \beta))} \ge an$ which is monotonic to determine $\max_{n: n \ge nm} a_n$



ТЛП

Challenge 2: Selection of a Generalization Scheme

ε-differentially private search strategy can be used

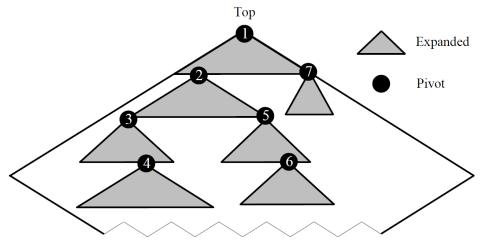
Challenges:

No search strategy described

Solution:

- Differentially private implementation of a typical search-based anonymization algorithm
- Greedy search through all possible combinations of generalization levels (lattice)
- Repeated applications of the exponential mechanism guided by score functions capturing utility

N. Li et al. On sampling, anonymization, and differential privacy: Or, k-anonymization meets differential privacy. In *ACM Symp. Information, Computer and Communications Security*, pages 32–33, 2012.



Challenge 3: Utility of Data – Score Functions

Score functions tailored to general purpose quality models

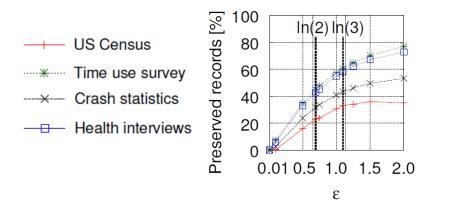
- Data Granularity (cell-level)
- Generalization Intensity (cell-level)
- Discernibility (record-level)
- Group Size (record-level)
- Non-Uniform Entropy (attribute-level)

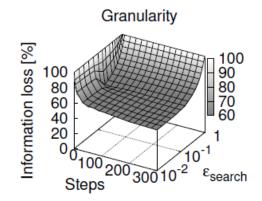
Workload-aware score function tailored to statistical classification

- Based on the special-purpose model proposed by lyengar

Challenge 3: Utility of Data – Evaluation

Parameterization:

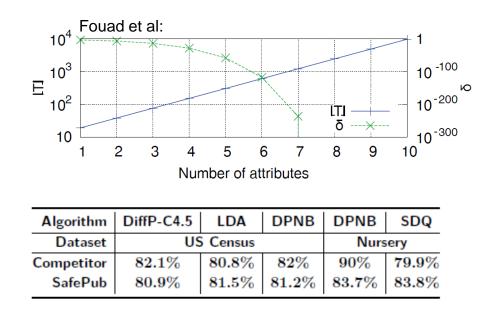


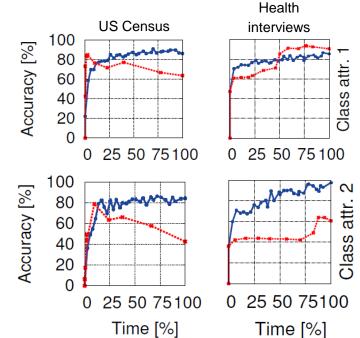


- A value of ε in the order of one is recommendable
- A value of about 300 search steps is recommendable
- Small privacy budget in the order of 0.1 sufficient for the search
- It has been suggested to choose δ depending on the size n of the dataset so that $\delta < \frac{1}{n}$ holds

Challenge 3: Utility of Data – Evaluations

Comparison of classification accuracies with prior work: 1-differential privacy: DiffGen, DiffP-C4.5, LDA, SDQ and DPNB $(1,10^{-\{9...14\}})$ -differential privacy: SafePub, Fouad et al.





Conclusions

- SafePub can compete with state-of-the-art
- The method is simple and easy to parameterize
- To achieve truthfulness, (ϵ, δ) -differential privacy must be implemented
- Various directiions for future research:
 - Investigate more flexible data transformation techniques
 - Consider the effects of random sampling performed during data acquisition to reduce the amount of explicit random sampling